Gusset Design and Analysis of the RIA Two Spoke Cavity

T. Schultheiss Advanced Energy Systems K. Shepard, M. Kelly Argonne National Laboratory

10/7/02 Spoke Cavity Workshop Los Alamos National Lab

- Gusset was shaped to minimize pressure induced frequency shift (K. Shepard)
 - Effects of system pressure
 - tolerance of helium bath pressure
 - 18 psi ± 3 psi
 - Effects of mechanical tuner
 - frequency shift from a given load
- Room temperature stress limits
 - Helium pressure load
 - Tuning load
 - combined
- Minimize the helium volume
- 2- D to define gusset geometry
- 3- D to determine 3- D effects

Gusset geometry and frequency shift sensitivity

Gusset Design and Analysis

• Final Gusset geometry after many trials

Displacements due to pressure load

• 21 psi helium pressure

Tuner force load results

von Mises stress pressure + tuner loads

3-D model RT pressure stress results in niobium

RT pressure stress results in niobium

Material	Room Temperature ksi	77 K ksi	4 K ksi
Niobium RRR 250	9.7	89.6	95.4
Niobium RRR 250 weld	10.2	64.5	68.2
Niobium RRR 40 (reactor grade)	11.0	64.2	67.9**
Niobium RRR 40 (reactor grade) weld	13.9	65.3**	47.4**

^{*} From R. P. Walsh, et. al., "Low Temperature Tensile and Fracture Toughness Properties of SCRF Cavity Structural Materials", 9th Workshop on RF Superconductivity, paper tup014, Santa Fe, New Mexico, 1999.

[^] Values are for 0.2% yield unless otherwise noted by **

^{**} Failure occurs before 0.2% offset is reached

- We have designed a Gusset stiffener to mitigate pressure induced RF frequency shifts
- Room temperature stresses are higher than we would have liked but are local and are not expected to result in an adverse effect on the overall structure
- Strength of Niobium significantly higher at 77K and below
- Using 12 1/4 inch thick flat gussets
 - Frequency shift

Pressure shift
9.158E-06 Δ f/f
Tuner shift
9.158E-05 Δ f/f

Tuner/pressure shift ratio
7.57 times

